

Automotive Multi-topology Controller IC

Features

- AEC-Q100 qualified
 - Device ambient temperature: -40°C $\leq T_A \leq 125$ °C
 - Device junction temperature: -40°C \leq T_J \leq 150°C
- Wide input voltage: 4.5 V to 60 V
- Maximum output voltage is up to 60 V
- Enable function with very low shutdown current,
 < 15 µA at 105°C
- Multi-topology supported, Boost, Buck, Buck-Boost, SEPIC and Flyback
- Constant current or constant voltage regulation
- Switching frequency: 100 kHz to 500 kHz
- Optimized EMI performance
 - Spread spectrum: 7 kHz, ±15%
 - SYNC to external frequency
- Analog and PWM dimming (embedded or external) to adjust average LED current
- Diagnostic and protection
 - Open load, short to GND and open feedback detection
 - Output overvoltage protection
 - Input undervoltage protection
 - Overtemperature shutdown

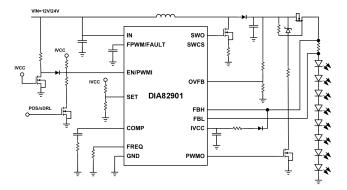
Applications

- Automotive exterior lighting
- General illumination
- General DC-DC controller

Package Information

Part Number	Package	Body Size
DIA82901	EP-TSSOP14	5.0 mm × 4.4 mm

Description


The DIA82901 is a multi-topology current mode DC-DC controller that supports Boost, Buck, Buck-Boost, SEPIC and Flyback. Flexible configuration in constant current/voltage and multi-topology make it ideal for automotive LED application.

The DIA82901 supports both analog dimming and PWM dimming. In addition to internal PWM dimming, embedded PWM dimming is supported, which can save the MCU resource. The device has very low shutdown current by enable function.

The switching frequency is adjustable from 100 kHz to 500 kHz or synchronized from 250 kHz to 500 kHz. The EMI performance of DIA82901 can be optimized by spread spectrum modulator.

The full diagnostic and protection are integrated, open circuit and short to GND detection, output overvoltage and input undervoltage protection, temperature shutdown. All these faults can be reported by FPWM/FAULT pin. In addition, the soft start function is integrated which limits the inrush current and voltage overshoot at start-up.

Simplified Schematic

Ordering Information

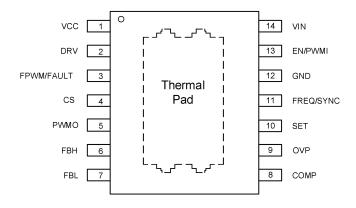
Ordering Part No.	Top Marking	MSL	RoHS	TA	Package	
DIA82901XT14	DIABG0A	3	Green	-40 to 125°C	EP-TSSOP14	Tape & Reel, 2500

If you encounter any issue in the process of using the device, please contact our customer service at marketing@dioo.com or phone us at (+86)-21-62116882. If you have any improvement suggestions regarding the datasheet, we encourage you to contact our technical writing team at docs@dioo.com. Your feedback is invaluable for us to provide a better user experience.

Table of Contents

1. Pin Assignment and Functions	1
2. Absolute Maximum Ratings	2
3. Recommended Operating Conditions	2
4. ESD Ratings	3
5. Thermal Considerations	3
6. Electrical Characteristics	4
7. Block Diagram	8
8. Function Description	9
8.1. Switching regulator	9
8.2. Switching oscillator and synchronization	9
8.3. Enable & Dimming function	. 12
8.4. FPWM/FAULT indicator	16
8.5. Linear regulator	16
8.6. Protection and diagnostic functions	
8.7. Analog dimming	21
9. Application Information	25
10. Physical Dimensions: EP-TSSOP14	. 31

List of Figures


Figure 1. EP-TSSOP14 (Top view)	1
Figure 2. Block diagram	8
Figure 3. Switching regulator block diagram	9
Figure 4. Oscillator and synchronization block diagram	10
Figure 5. Synchronization timing diagram	10
Figure 6. Spread spectrum modulator	12
Figure 7. Block diagram and simplified application circuit enable and LED dimming	13
Figure 8. Timing diagram enable and LED dimming	13
Figure 9. Duty cycle variation as a function of V _{EN/PWMI}	14
Figure 10. Block diagram of PWM engine	14
Figure 11. PWM frequency variation as a function of C _{FPWM}	15
Figure 12. Block diagram of analog PWM dimming with simplified application circuit	16
Figure 13. Timing diagram enable and LED dimming with PWM engine	16
Figure 14. Voltage regulator block diagram and simplified application circuit	17
Figure 15. Protection and diagnostic function block diagram	18
Figure 16. Open load and open feedback conditions	19
Figure 17. Open load, overvoltage and overtemperature timing diagram	19
Figure 18. Device overtemperature protection behavior	20
Figure 19. Overvoltage protection description	20
Figure 20. Short circuit to GND protection	21
Figure 21. Basic relationship between V_{REF} and V_{SET} voltage	22
Figure 22. Concept drawing analog dimming	22
Figure 23. Analog dimming in various applications	24
Figure 24. Boost to ground using embedded PWM engine application circuit - B2G (Boost configuration)	25
Figure 25. Boost to ground using digital dimming application circuit - B2G (Boost configuration)	25
Figure 26. SEPIC using embedded PWM engine application circuit (Buck-Boost configuration)	26
Figure 27. SEPIC using digital dimming application circuit (Buck-Boost configuration)	26
Figure 28. Flyback using embedded PWM engine application circuit (Buck-Boost configuration)	27
Figure 29. Flyback using digital dimming application circuit (Buck-Boost configuration)	27
Figure 30. Boost to battery using embedded PWM engine application circuit - B2B (Buck-Boost configuration	n)28
Figure 31. Boost to battery using digital dimming application circuit - B2B (Buck-Boost configuration)	28
Figure 32. Buck using embedded PWM application circuit	29
Figure 33. Buck using digital dimming application circuit	29
Figure 34. Boost voltage application circuit	30
Figure 35. SEPIC voltage application circuit	30
Figure 36. Flyback voltage application circuit	30

List of Tables

Table 1. R _{FREQW} vs. f _{SW} 11	
Table 2. Diagnosis truth table ⁽¹⁾	

1. Pin Assignment and Functions

Figure 1. EP-TSSOP14 (Top view)

Pin No.	Name	Туре	Description	
1	VCC	0	Internal LDO. Used for internal biasing and gate drive. Bypass with external capacitor. Do not leave the pin open.	
2	DRV	0	Switch gate driver. Connect the pin to gate of external switching MOSFET.	
3	FPWM/FAULT	0	 PWM frequency selector. Connect external capacitor to set PWM frequency. 2. 2. Pull high when fault (VCC_UVLO, OPEN, SHORT, TSD or OVP, FBH/FBL OVP) occurs; pull low when VIN_UVLO occurs. 	
4	CS	I	Current sense. Detects the peak current through switch.	
5	PWMO	0	PWM dimming. Connect to gate of external MOSFET.	
6	FBH	I	Voltage feedback positive. Non inverting input (+).	
7	FBL	I	Voltage feedback negative. Inverting input (-).	
8	COMP	I	Compensation. Connect RC network to the pin for control loop stability.	
9	OVP	I	Overvoltage protection feedback. Connect to resistive voltage divider to set overvoltage threshold.	
10	SET	I	Analog dimming. Load current adjustment pin. Do not leave the pin open. If analogy dimming feature is not used, connect the pin to VCC pin.	
11	FREQ/SYNC	I	Frequency select or synchronization. Connect external resistor to GND to set frequency (two resistor sets are defined for activating or deactivating the spread spectrum modulator).	
12	GND	G	Ground. Connect to system ground.	
13	EN/PWMI	I	Enable or PWM. Apply logic "low" signal to disable device and put it in low current consumption. Apply logic "high" signal to enable device or PWM signal for dimming LED. Apply an analog signal (in a proper range) to enable a PWM engine which works at a defined duty cycle.	
14	VIN	I	Supply. Supply for internal biasing.	
	Thermal pad	-	Thermal pad. Connect to external heat spreading GND Cu area (for example, inner GND layer of multilayered PCB with thermal vias).	

2. Absolute Maximum Ratings

Exceeding the maximum ratings listed under Absolute Maximum Ratings when designing is likely to damage the device permanently. Do not design to the maximum limits because long-time exposure to them might impact the device's reliability. The ratings are obtained over an operating free-air temperature range unless otherwise specified.

Symbol	Parameter	Rating	Unit
	Voltage range on OVP, CS, DRV, FPWM/FAULT, COMP, FREQ/SYNC, PWMO, VCC	-0.3 to 5.5	V
Vin	Supply input voltage	-0.3 to 60	V
V _{SET}	SET	-0.3 to 60	V
V _{EN}	Enable or PWM input voltage	-40 to 60	V
V _{FBH} - V _{FBL}	Feedback error amplifier differential	-40 to 60	V
V _{FBH} , V _{FBL}	Feedback error amplifier inputs	-40 to 60	V
Ifbh, Ifbl	FBH and FBL current feed back error amplifier inputs (t < 100 ms, V _{FBH} - V _{FBL} = 0.3 V)	1	mA
TJ	Junction temperature	-40 to 150	°C
T _{STG}	Storage temperature	-55 to 150	°C

3. Recommended Operating Conditions

Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. The ratings are obtained over an operating free-air temperature range unless otherwise specified.

Symbol	Parameter	Rating	Unit
VIN	Extended supply voltage range	4.5 to 60	V
V _{FBH} , V _{FBL}	Feedback voltage input	3 to 60	V
TJ	Junction temperature	-40 to 150	°C

4. ESD Ratings

When a statically-charged person or object touches an electrostatic discharge sensitive device, the electrostatic charge might be drained through sensitive circuitry in the device. If the electrostatic discharge possesses sufficient energy, damage might occur to the device due to localized overheating.

Model	Condition	Value	Unit
Human-body model	AEC-Q100-002	±2000	V
Charged-device model	AEC-Q100-011	±750	V

5. Thermal Considerations

The thermal resistance determines the heat insulation property of a material. The higher the thermal resistance is, the lower the heat loss. Accumulation of heat energy degrades the performance of semiconductor components.

Symbol	Metric	Value	Unit
Reja	Junction-to-ambient thermal resistance	53	°C/W

6. Electrical Characteristics

The values are obtained under $V_{IN} = 8$ V to 34 V, $T_J = -40^{\circ}$ C to 150°C, all voltages with respect to ground, positive current flowing into pin, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Switching regulator						
V _{REF}	Feedback reference voltage	$V_{REF} = V_{FBH} - V_{FBL} V_{SET} = 5 V;$ $I_{LED} = 350 \text{ mA}; \text{ Differential signal}$ (not referred to GND)	0.29	0.30	0.31	v
V _{REF}	Feedback reference voltage	V _{REF} = V _{FBH} -V _{FBL} ; V _{SET} = 0.4 V; I _{LED} = 70 mA; Differential signal (not referred to GND)	0.057	0.06	0.063	v
V_{REF_offset}	Feedback reference voltage offset	$V_{REF} = V_{FBH} - V_{FBL}$, $V_{SET} = 0.1 V$; $V_{OUT} > V_{IN}$, Differential signal (not referred to GND)			5	mV
$(\Delta V_{REF}/V_{REF}) / \Delta V_{IN}$	Voltage line regulation	V _{IN} = 8 V to 19 V; V _{SET} = 5 V; I _{LED} = 350 mA			0.15	%/V
$(\Delta V_{REF}/V_{REF}) / \Delta I_{BO}$	Voltage load regulation	V _{SET} = 5 V; I _{LED} = 100 to 500 mA			5	%/A
V _{CS}	Switch peak overcurrent threshold	V_{FBH} = V_{FBL} = 5 V; V_{COMP} = 3.5 V	125	150	175	mV
D _{MAX,fixed}	Maximum duty cycle	Fixed frequency mode	91			%
D _{MAX,sync}	Maximum duty cycle	Synchronization mode	88			%
t _{ss}	Soft start ramp	V_{SET} = 5 V; V_{REF} rising from 5% to 95% of V_{REF} (typ)	350	1000	1500	μs
I _{FBH}	Feedback high input current	V _{FBH} - V _{FBL} = 0.3 V	38	46	54	μA
I _{FBL}	Feedback low input current	V _{FBH} - V _{FBL} = 0.3 V	15	21	27	μA
I _{CS}	Switch current sense input current	V _{CS} = 150 mV	10	50	100	μA
$V_{\text{IN,off}}$	Input undervoltage shutdown	V _{IN} decreasing	3.5		4.5	v
V _{IN,on}	Input voltage startup	V _{IN} increasing			4.85	V
Gate driver for exte	rnal switch ⁽¹⁾	I	1	I	1	
I _{DRV,SRC}	Gate driver peak sourcing current	V _{DRV} = 1 V to 4 V; Current flows out of pin		380		mA
Idrv,snk	Gate driver peak sinking current	$V_{DRV} = 4 V$ to 1 V		550		mA
t _{R,DRV}	Gate driver output rise time	C _{L,DRV} = 3.3 nF; V _{DRV} = 1 V to 4 V		30	60	ns
t _{F,DRV}	Gate driver output fall time	C _{L,DRV} = 3.3 nF; V _{DRV} = 4 V to 1 V		20	40	ns
VDRV	Gate driver output voltage	C _{L,DRV} = 3.3 nF	4.5		5.5	v
Oscillator	1	1	1	1	1	1

				vers	sion 1.1, J	ui 202
ffreq	Oscillator frequency	R _{FREQ} = 33 kΩ	250	300	350	kHz
	Oscillator frequency		100		500	
f _{FREQ}	adjustment range		100		500	kHz
I _{FREQ}	FREQ/SYNC supply current	V _{FREQ} = 0 V			3	mA
V _{FREQ}	Frequency voltage	R_{FREQ} = 33 k Ω (f _{FREQ} = 300 kHz)	0.56	0.6	0.64	V
Synchronization	-					
£	Synchronization frequency		250		500	
f _{SYNC}	capture range		250		500	kHz
V _{SYNC,H} ⁽¹⁾	Synchronization signal high	Synchronization of external PWM	3.0			v
V SYNC,H	logic level valid	"on" signal to falling edge	3.0			V
V _{SYNC,L} ⁽¹⁾	Synchronization signal low	Synchronization of external PWM			0.8	v
V SYNC,L V	logic level valid	"on" signal to falling edge			0.0	v
t _{sync.pwm} ⁽¹⁾	Synchronization signal logic	Synchronization of external PWM	200			ns
LSYNC,PWM Y	high pulse width	"on" signal to falling edge	200			113
Spread spectrum n	nodulator					
f _{FM} ⁽¹⁾	Modulation frequency	1.5 kΩ ≤ R_{FREQ} ≤ 9 kΩ		7		kHz
c (1)	M 14 C . 1 . 0	Related to switching frequency				0/
f _{DEV} ⁽¹⁾	Modulation depth	$f_{FREQ} 1.5 \text{ k}\Omega \leq R_{FREQ} \leq 9 \text{ k}\Omega$		±15		%
Enable / PWM inpu	t					
	Enable/PWMI turn on					.,
V _{EN/PWMI,ON}	threshold		3			V
	Enable/PWMI turn off					.,
V _{EN} /pwmi,off	threshold				0.8	V
I _{EN/PWMI,H}	Enable/PWMI high input	VEN/PWMI = 16.0 V			100	μA
	current					_ '
I _{EN/PWMI,L}	Enable/PWMI low input current	V _{EN/PWMI} = 0.5 V		0.1	1	μA
t _{en,off,del}	Enable turn off delay time		8	10	12	ms
t _{PWMI,H}	Minimum PWMI duty time		6			μs
t _{en,start} ⁽¹⁾	Enable startup time		100			μs
		PWM engine sets DC	0.313×	0.32 ×		
VEN/PWM,DC_0	PWM engine min voltage	PWMO = 0%	Vcc	Vcc		V
		PWM engine sets DC		0.56 ×	0.571×	
VEN/PWM,DC_100	PWM engine max voltage	PWMO = 100%		Vcc	Vcc	V
DCPWMO,DC_10%	PWM engine DC	V _{EN/PWM} = 0.344 × V _{CC}	8.5	10	11.5	%
f _{PWMO} ⁽¹⁾	PWM frequency range		100		500	Hz
	Enable/PWMI internal			/ a=		
R _{en_int} ⁽¹⁾	pull-down resistor	$V_{EN/PWMI} = 1.5 V \text{ to } 3 V$	0.7	1.35	2	MΩ
1 /4\	FPWM/FAULT charging		450	000	050	
I _{FPWM_CH} ⁽¹⁾	current		-150	-200	-250	μA
	FPWM/FAULT discharging		450	200	050	
I _{FPWM_DIS} ⁽¹⁾	current		150	200	250	μA

				vers	510N 1.1, J	ui 202
VFPWM_H ⁽¹⁾	FPWM/FAULT voltage		1.9	2	2.1	v
	rising threshold					
$V_{\text{FPWM}_L} \ ^{(1)}$	FPWM/FAULT voltage falling threshold		0.9	1	1.1	V
V _{FPWM}	FPWM/FAULT output voltage with fault	I _{source} = 2 mA	4			v
fpwmo ⁽¹⁾	PWM frequency	С _{ГРWM} = 560 рF	265	350	435	Hz
Gate driver for dim	ming switch ⁽¹⁾	I	1	I		
	PWMO gate driver peak	V_{PWMO} = 1 V to 4 V;				
I _{PWMO,SRC} ⁽¹⁾	sourcing current	Current flows out of pin		230		mA
Ipwmo,snk ⁽¹⁾	PWMO gate driver peak sinking current	V _{PWMO} = 4 V to 1 V		370		mA
Enable and dimmin	g ⁽¹⁾					1
	PWMO gate driver output	C _{L,PWMO} = 3.3 nF;				
t _{R,PWMO}	rise time	V _{PWMO} = 1 V to 4 V		50	100	ns
	PWMO gate driver output	С _{L,РWMO} = 3.3 nF;				ns
t _{F,PWMO}	fall time	V _{PWMO} = 4 V to 1 V		30	60	
V _{PWMO}	PWMO gate driver output voltage	C _{L,PWMO} = 3.3 nF	4.5		5.5	v
Current consumption	-					<u> </u>
	Current consumption,	V _{EN/PWMI} = 0.5 V; T _J ≤ 105°C;				
IQ_OFF	shutdown mode	V _{IN} = 16 V			15	μA
		V _{EN/PWMI} ≥ 4.75 V; R _{FREQ} = 33 kΩ;				
		$I_{BO} = 0 \text{ mA}$: $V_{DRV} = 0\%$ duty cycle:				mA
Iq_оn	Current consumption, active	Dependency on switching		7		
	mode	frequency and gate charge of				
		external switches				
Line regulator			1			
	Output voltage	$6 \text{ V} \leq \text{V}_{\text{IN}} \leq 45 \text{ V},$	4.85 5		E 1E	V
Vcc	Output voltage	$0.1 \text{ mA} \le I_{CC} \le 40 \text{ mA}$			5.15	V
	Output oursent limitation	V _{IN} = 13.5 V; V _{CC} = 4.5 V;	E 4		90	mA
ILIM	Output current limitation	Current flows out of pin	51			
V _{DR}	Dropout voltage	V _{IN} = 4.5 V; V _{CC} = 25 mA			0.5	V
V _{CC,HDRM} ⁽²⁾ ⁽³⁾	Undervoltage reset headroom	V _{CC} decreasing; V _{CC} - V _{CC_OFF}	100			mV
V_{CC_OFF} ⁽⁴⁾	VCC undervoltage reset switch-off threshold	V _{CC} decreasing	3.6		4	v
V _{CC_ON}	VCC undervoltage reset switch-on threshold	V _{cc} increasing			4.5	v
Short circuit protec			I	1	<u> </u>	<u>I</u>
V _{FBL,FBH} s2g	FBH and FBL short circuit					
	fault sensing common mode	V _{FBH} = V _{FBL} decreasing	1.5	1.5 2		
VFBL,FBH S2G						

Temperature protection (1)

remperature protection (1)								
Overtemperature shutdown		160	170	180	°C			
Overtemperature shutdown hysteresis			15		°C			
Overvoltage protection								
Output overvoltage								
feedback threshold		1.21	1.25		V			
increasing								
Output overvoltage	Output voltage decreasing	50	50	150	mV			
feedback hysteresis								
Overvoltage reaction time	Output voltage decreasing	2		10	μs			
Overvoltage feedback input	$V_{0VP} = 1.25 V$	_1	0.1	1	μA			
current	V0VP - 1.20 V		0.1					
Open load and open feedback diagnostics								
Open load/feedback	V _{REF} = V _{FBH} - V _{FBL} ;	-100		20	mV			
threshold	Open circuit 1 or 3			-20 1110				
Open feedback threshold	$V_{REF} = V_{FBH} - V_{FBL}$; Open circuit 2	0.5		1	V			
FBH/FBL OVP								
FBH/FBL overvoltage		75			v			
threshold					v			
Analog Dimming								
SET programming range		0		1.6	V			
	Overtemperature shutdown Overtemperature shutdown hysteresis Cutput overvoltage feedback threshold increasing Output overvoltage feedback hysteresis Overvoltage reaction time Overvoltage feedback input current En feedback diagnostics Open load/feedback threshold Open feedback threshold	Overtemperature shutdown Overtemperature shutdown hysteresis Coutput overvoltage feedback threshold increasing Output overvoltage feedback threshold increasing Output overvoltage feedback hysteresis Output voltage reaction time Overvoltage feedback input current VovP = 1.25 V Image: Feedback diagnostics Open load/feedback VREF = VFBH - VFBL; Open circuit 1 or 3 Open feedback threshold VREF = VFBH - VFBL; Open circuit 2	Overtemperature shutdown 160 Overtemperature shutdown hysteresis Nysteresis 1 Output overvoltage 1.21 feedback threshold 1.21 increasing 0utput overvoltage feedback hysteresis 0utput voltage decreasing Overvoltage reaction time 0utput voltage decreasing Overvoltage feedback input current VovP = 1.25 V Image: Feedback diagnostics -1 Open load/feedback VREF = VFBH - VFBL; Open feedback threshold VREF = VFBH - VFBL; Open feedback threshold VREF = VFBH - VFBL; Open circuit 2 Open feedback threshold VREF = VFBH - VFBL; Open circuit 2 FBH/FBL overvoltage -100	Overtemperature shutdown160170Overtemperature shutdown hysteresis15Stion15Output overvoltage feedback threshold increasing1.211.21Output overvoltage feedback hysteresisOutput voltage decreasing feedback hysteresis50Overvoltage reaction timeOutput voltage decreasing torurent2Overvoltage feedback input currentVovP = 1.25 V-10.1Open load/feedback thresholdVREF = VFBH- VFBL; Open circuit 1 or 3-100-100FBH/FBL overvoltage thresholdVREF = VFBH- VFBL; Open circuit 20.575	Overtemperature shutdown hysteresis160170180Overtemperature shutdown hysteresis1515Cutput overvoltage feedback threshold increasing1.211.25Output overvoltage feedback hysteresisOutput voltage decreasing feedback hysteresis50150Overvoltage reaction timeOutput voltage decreasing torurent210Overvoltage feedback input currentVovP = 1.25 V-10.11Image: feedback diagnosticsVREF = VFBH-VFBL; Open circuit 1 or 3-100-20Open feedback thresholdVREF = VFBH-VFBL; Open circuit 20.51FBH/FBL overvoltage thresholdVREF = VFBH-VFBL; Open circuit 27575			

Note:

(1) Guaranteed by design.

(2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.

(3) If embedded PWM engine is used, a 4.7 μ F value has to be chosen as a minimum.

(4) Selection of external switching MOSFET is crucial and the V_{CC_OFF min} as worst case the threshold voltage of MOSFET must be considered.

(5) It is recommended that the chip peripheral capacitance parameters VCC Buffer Capacitor(C_{CC}) and VCC Buffer Capacitor ESR($R_{CC,ESR}$) meet the following requirements: 0.47 μ F $\leq C_{CC} \leq 100 \mu$ F, $R_{CC,ESR} \leq 0.5 \Omega$.

(6) Specifications subject to change without notice.

7. Block Diagram

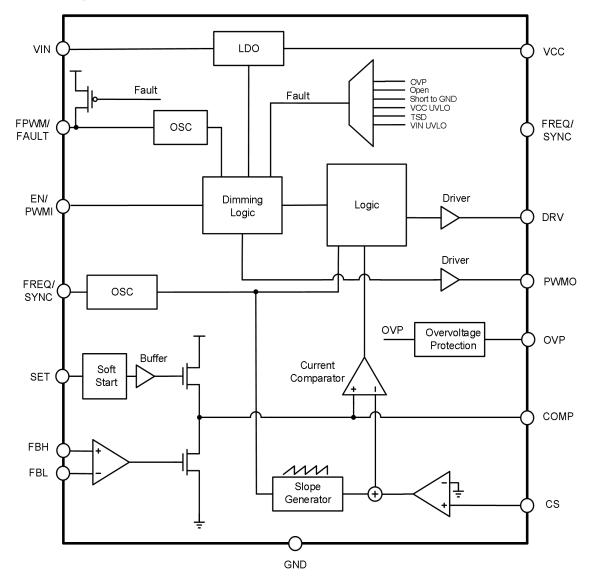


Figure 2. Block diagram

8. Function Description

8.1. Switching regulator

The DIA82901 regulator is suitable for boost, buck, buck-boost, sepic and flyback configurations. The constant output current is especially great for light emitting diode (LED) applications. The switching regulator function is implemented by a pulse width modulated (PWM) current mode controller.

To determine the appropriate pulse width duty cycle (on time) for constant output current, the switching current mode controller adopts the peak current through the external power switch and error in the output current. A modulated signal to an internal gate driver is provided by the current mode controller, and it drives an external n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch.

The current mode controller also has integrated internally slope compensation, preventing sub-harmonic oscillations which is a characteristic of current mode controllers operating at high duty cycles (>50% duty). The DIA82901 also features an integrated soft start which limits the current through the inductor and external power switch during initialization. The soft start function gradually increases the inductor and switch current over t_{SS} so as to minimize potential overvoltage at the output.

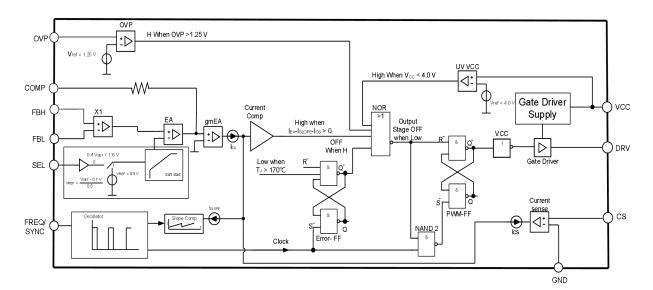


Figure 3. Switching regulator block diagram

8.2. Switching oscillator and synchronization

8.2.1. RFREQ vs. switching frequency

The internal oscillator of the DIA82901 can determine the switching frequency of the regulator. An external resistor referred to GND can be used to select the switching frequency ranging from 100 kHz to 500 kHz and the status of spread spectrum modulator can be selected.

The range scale of the usable resistor is divided in two sections.

For lower values of resistor it selects the switching frequency with the spread spectrum modulator "on", while for higher values of the range it selects the switching frequency with the spread spectrum modulator "off".

To set the desired switching frequency with spread spectrum modulator "off", the external resistor value is calculated by the following equation and is summarized in Table 1.

$$R_{FREQ} - s_{SMoff} = \frac{1}{(340 \times 10^{-12} \times f_{FREQ})^{1.13}}$$
(1)

To set the desired switching frequency with spread spectrum modulator "on", the external resistor value is calculated by the following equation.

$$R_{FREQ} - s_{SMon} = \frac{1}{(600 \times 10^{-12} \times f_{FREQ})^{0.934}} - (600)$$
(2)

What's more, the oscillator is able to change from the frequency set by the external resistor to a synchronized frequency from an external clock source. If the pin FREQ/SYNC provides an external clock source, the internal oscillator synchronizes to this external clock frequency and the boost regulator switches at the synchronized frequency. The synchronization frequency capture ranges from 250 kHz to 500 kHz.

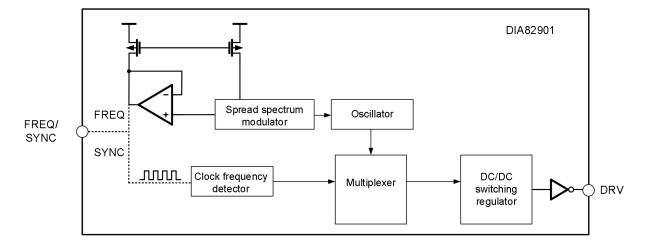


Figure 4. Oscillator and synchronization block diagram

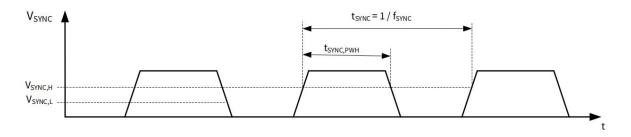


Figure 5. Synchronization timing diagram

Table 1. RFREQW VS. fsw

Spread spectrum	R _{FREQW}	fsw
	1.8 kΩ	435 kHz
	2.2 kΩ	370 kHz
	2.7 kΩ	311 kHz
	3.3 kΩ	260 kHz
Spread spectrum On	3.9 kΩ	224 kHz
	4.7 κΩ	188 kHz
	5.6 kΩ	159 kHz
	6.8 kΩ	132 kHz
	8.2 kΩ	110 kHz
	22 kΩ	422 kHz
	27 kΩ	352 kHz
	33 kΩ	295 kHz
Constant and strength Off	39 kΩ	254 kHz
Spread spectrum Off	47 κΩ	216 kHz
	56 kΩ	185 kHz
	68 kΩ	156 kHz
	82 kΩ	132 kHz

8.2.2. Spread spectrum

In the lower frequency range of the spectrum (for example, f < 30 MHz), the spread spectrum modulation technique greatly improves the EMI performance.

The spread spectrum approach may be used to improve the input and output filters to meet EMC requirements. Furthermore, because the input capacitor series resistor is necessary for the low frequency filter characteristic, the need for low ESR input capacitors is reduced. If average restrictions are strictly enforced, this can be advantageous economically.

The modulation frequency f_{FM} is internally fixed, while the modulation depth is a fraction of the switching frequency f_{DEV} .

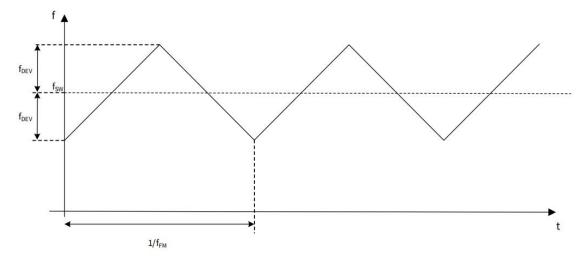


Figure 6. Spread spectrum modulator

8.3. Enable & Dimming function

The enable and dimming functions of the DIA82901 will be affected by The status of the pin EN / PWMI. For different values of the voltage on this pin, the device has different behaviors as below:

- When V_{EN/PWMI} < V_{EN/PWMI,OFF} (= a valid logic "low" is present), the device is powered off;
- When V_{EN/PWMI} > V_{EN/PWMI,ON} (= a valid logic "high" is present), the device is powered on and it can accept a digital PWM;
- When an analog signal is in between V_{EN/PWMI,DC_0} and V_{EN/PWMI,DC_100}, the device and the embedded PWM engine are powered on.

8.3.1. Enable function

The enable function determines whether the device is on or off. When the device is at the start-up status or when a valid logic low signal on enable pin EN / PWMI for a time longer than $t_{EN,OFF,DEL}$ powers off the device, the current consumption is less than I_{Q_OFF} .

To fully activate the DIA82901 at the start-up status, a valid logic "high" need to be present while the VCC reaches the level V_{CC_ON} .

To achieve the enable function, the DIA82901 has integrated a pull down resistor . If the EN pin is left open, this pull down resistor, R_{EN_INT} , makes sure that the IC is shut down and the power switch is off.

8.3.2. Digital PWM dimming function

If a valid logic high/low pattern is present on EN / PWMI, the digital PWM dimming function is activated. The EN / PWMI signal sets the average current on the load, enabling and disabling the gate drivers according to the logic signal present in the pin.

The DIA82901 distinguishes between the enable off and PWM dimming signal when PWM logic is engaged by requiring the enable off at the EN/PWMI pin to remain low for the Enable turn off delay time. Find the details of the pattern and the timing constraints in the below figure.

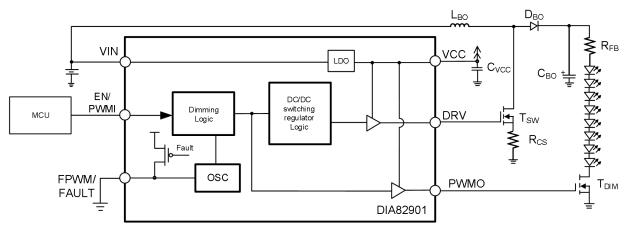


Figure 7. Block diagram and simplified application circuit enable and LED dimming

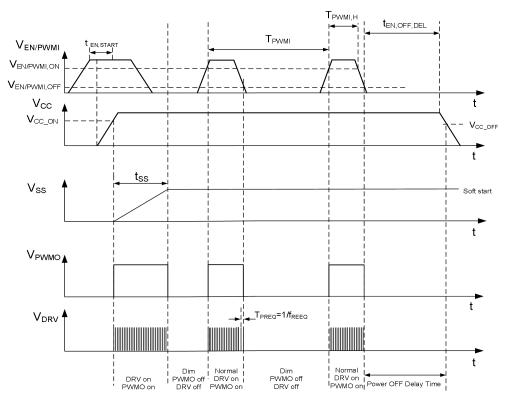


Figure 8. Timing diagram enable and LED dimming

Note: The slope of the V_{CC} is related to the filter capacitor. So its steady state condition can be achieved after $t_{EN,START}$.

8.3.3. Embedded PWM dimming function

In the voltage window in between a valid logic "low" level and a valid logic "high" level, the embedded PWM dimming function (PWM engine) is activated. According to the analog voltage of the pin, a duty cycle (DC) on PWMO output is generated in this voltage window. The equation (3) show how to get the DC value:

$$DC[\%] = \frac{V_{EN/PWMI} - 0.32 \times V_{CC}}{0.24 \times V_{CC}} \times 100[\%]$$
(3)

About the calculation of the $V_{EN/PWMI}$, the pull-down resistor is involved and the resistor features the shut down when the pin EN is left open. If this value is considered and a voltage divider between VCC and ground is used, the DC can be calculated by the equation (4):

$$DC[\%] = \frac{\frac{R_{B} || R_{EN_{INT}}}{R_{B} || R_{EN_{INT}} + R_{A}} - 0.32}{0.24} \times 100[\%]$$
(4)

The frequency of PWMO signal varies with the value of the capacitor on the pin FPWM/FAULT. Two internal current generators charge and discharge the capacitor and this signal supplies an internal divider to produce the desired frequency.

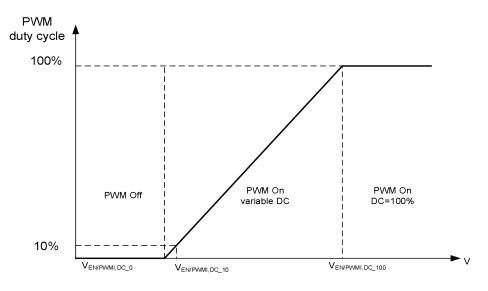


Figure 9. Duty cycle variation as a function of VEN/PWMI

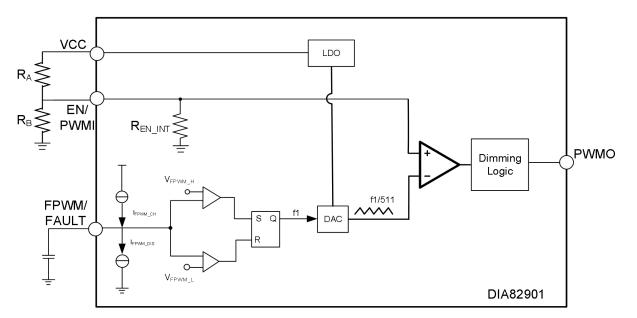


Figure 10. Block diagram of PWM engine

The following equation shows the relation of PWM frequency and the capacitor:

$$f_{PWMO} = \frac{1}{511 \times C_{FPWM} \times (V_{FPWM_H} - V_{FPWM_L}) \times (\frac{1}{|I_{FPWM_CH}|} + \frac{1}{|I_{FPWM_DIS}|})}$$
(5)

Typically, the variation of PWM frequency is shown in Figure 11. DIOO recommends to put this capacitor very close to the pin FPWM/FAULT so as to decrease the impact of parasitic capacitance as much as possible. The signal produced by the PWM engine (with the desired DC and frequency) is capable of enabling and disabling the gate drivers and modulating the average current on the load.

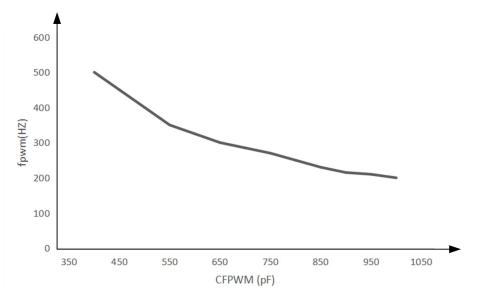


Figure 11. PWM frequency variation as a function of CFPWM

To activate the internal logic, it's only in the start-up status that a valid logic high on the pin EN/PWMI is needed. The valid logic high on pin EN/PWMI has to remain until V_{CC} reaches its steady state. A proposal circuit to obtain this behavior is shown in Figure 12.

It acts as below:

- At start-up Q1 is off and VIN supplies pin EN / PWMI through R_{LIM} and it starts up the circuit;
- When the DIA82901 is ready to work (for example, the VCC has reached its steady state), the VCC switches on Q1 (the current through Q1 is limited by R_{LIM});
- Then the voltage on EN / PWMI pin given by the resistor divider R_A, R_B provides the desired duty cycle.

The diode D1 ensures the proper behavior for the biasing.

Only when embedded PWM dimming function is used, this start-up circuit is needed. To ensure the start-up of the device, the suitable dimensioning of R_{LIM} and voltage divider (R_A and R_B) resistors is needed . $V_{EN/PWMI}$ has to be higher than $V_{EN/PWMI,ON}$ during start-up. Fixing R_{LIM} , R_B can be calculated by following equation:

$$R_{B} > \frac{V_{EN/PWMI, ON}}{V_{IN} - V_{D1} - V_{EN/PWMI, ON}} \times R_{LIM}$$
(6)

The value of R_A has to be calculated based on the desired duty cycle.

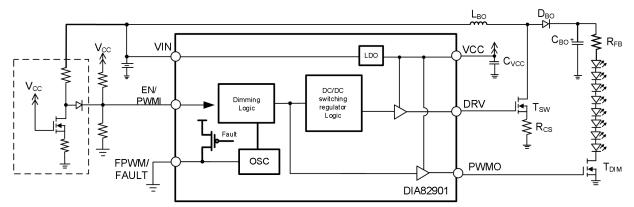


Figure 12. Block diagram of analog PWM dimming with simplified application circuit

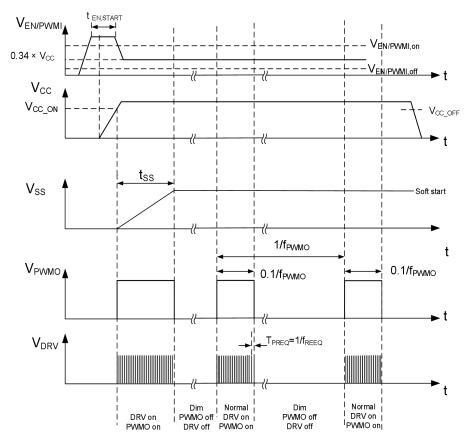


Figure 13. Timing diagram enable and LED dimming with PWM engine

8.4. FPWM/FAULT indicator

The devices allow the FPWM/FAULT pin to indicate fault conditions. The FPWM/FAULT pin goes high under the following conditions: VCC_UVLO, OPEN, SHORT, TSD, OVP Feedback or FBH/FBL OVP.

8.5. Linear regulator

The internal linear voltage regulator supplies the internal gate drivers with a voltage of 5 V (typ) and current up to $I_{LIM,min}$ For stability and buffering transient load currents, it's needed to have an external output capacitor with ESR lower than $R_{CC,ESR}$ on pin VCC.

During normal operation, the external MOSFET switches will draw transient currents from the linear regulator and its output capacitor. The output capacitor with a proper size must be considered to supply sufficient peak current to the gate of the external MOSFET switches.

8.5.1. Integrated undervoltage protection for the external switching MOSFET

In case the output voltage falls below the VCC undervoltage reset switch off threshold (V_{CC_OFF}), an integrated undervoltage reset threshold circuit is capable of monitoring the linear regulator output voltage (V_{CC}) and resets the device. Through the way of making sure that the gate drive voltage is sufficient to enhance the gate of an external logic level n-channel MOSFET, the undervoltage reset threshold for the VCC pin can protect the external switches from excessive power dissipation.

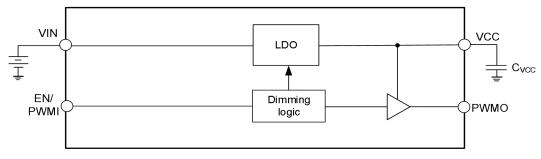


Figure 14. Voltage regulator block diagram and simplified application circuit

8.6. Protection and diagnostic functions

The integrated circuits of the device can diagnose and protect against output overvoltage, open load, open feedback and overtemperature faults. Furthermore, the FBH and FBL potential is monitored and in case the LED load is shorted to GND (See Figure 20) and the regulator stops the operation and protects the system. In case any of the six fault conditions occur the PWMO and DRV signal will change to an active logic "low" signal to communicate that a fault has occurred, while VCC shutdown occurs only in case of overtemperature or input undervoltage (See Figure 15 and Table 2). The various open load and open feedback conditions is shown in Figure 16.

If there's an overtemperature condition, the integrated thermal shutdown function turns off the gate drivers and internal linear voltage regulator. The typical value of junction shutdown temperature is 170°C. The IC will automatically restart after cooling down. The DIA82901 has integrated the thermal shutdown as a protection function, which can prevent IC destruction. It is not aimed at continuous use in normal operation (See Figure 18). To calculate the proper overvoltage protection resistor values (See Figure 19).

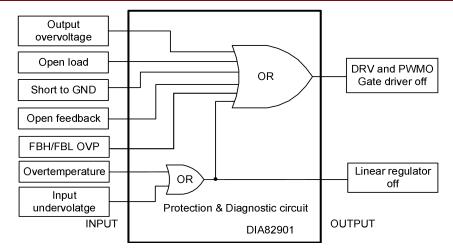


Figure 15. Protection and diagnostic function block diagram

Input			Output			
Condition	Level	DRV	PWMO	vcc		
	False	SW	High or SW	Active		
Overvoltage at output	True	Low	Low	Active		
Open load	False	SW	High or SW	Active		
	True	Low	Low	Active		
	False	SW	High or SW	Active		
Short to GND at LED chain	True	Low	Low	Active		
	False	SW	High or SW	Active		
Open feedback	True	Low	Low	Active		
_	False	SW	High or SW	Active		
Overtemperature	True	Low	Low	Shutdown		
Undervoltage at input	False	SW	High or SW	Active		
	True	Low	Low	Shutdown		
	False	SW	High or SW	Active		
FBH/FBL OVP	True	Low	Low	Active		

Table	2.	Diagnosis	truth	table ⁽¹⁾
-------	----	-----------	-------	----------------------

Note:

(1) SW = Switching; False = Condition does NOT exist; True = Condition does exist

3 4

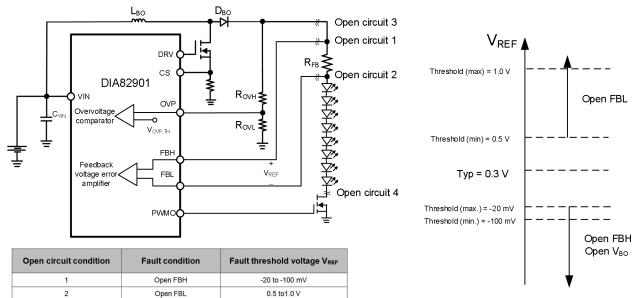


Figure 16. Open load and open feedback conditions

-20 to -100 mV

Detected by overvoltage

Open VBO

Open PWMO

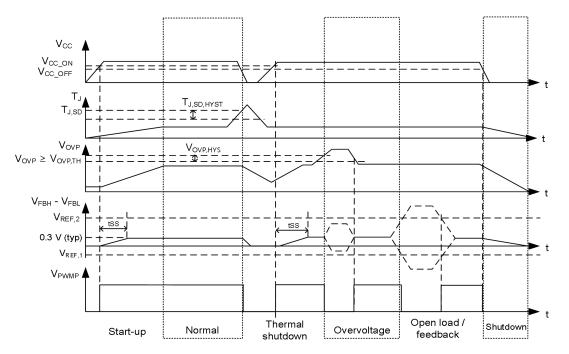


Figure 17. Open load, overvoltage and overtemperature timing diagram

dioo

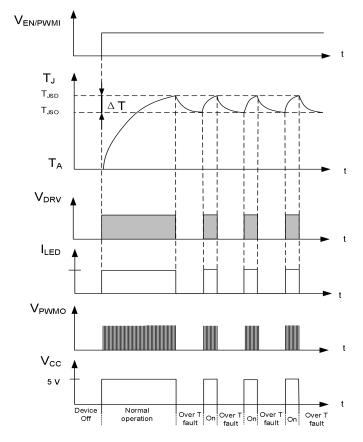


Figure 18. Device overtemperature protection behavior

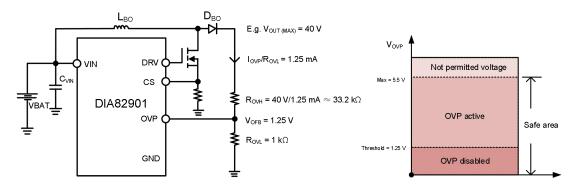


Figure 19. Overvoltage protection description

Short to GND protection for high-side return applications (B2B) from Figure 30 and Figure 31.

The FBH and FBL pins features a short to GND detection threshold (V_{FBL,FBH_S2G}). When the potential on these pins falls below this threshold, the device stops its operation. It will force the PWMO signal to change to inactive state ("low" potential) and the corresponding p-channel (T_{DIM2}) is switched off accordingly and protects the LED chain. For the B2B application some external components are needed to ensure a "low" potential during a short circuit event. D₁ and D₂ are low power diodes and the resistor R_{PROT} (10 k Ω) is required to limit the current through this path. The diode D₃ should be a high power diode and is required to protect the RFB, FBH and FBL pins when an short circuit to GND event occurs. This short circuit detection and protection concept considers potential faults for LED chains (LED modules) which are separated from the ECU through two wires (at the beginning and the end of the LED chain). If the short circuit condition disappears, the device will restart with a soft start.

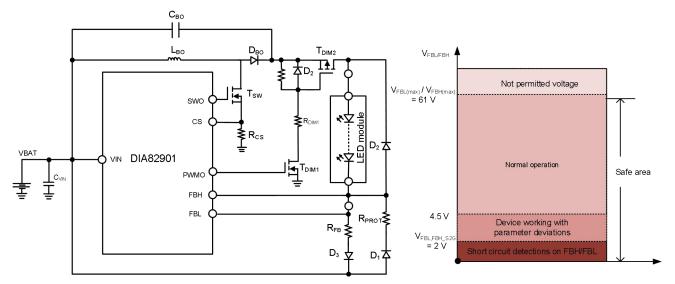


Figure 20. Short circuit to GND protection

8.7. Analog dimming

By generating an internal current based on its voltage (V_{SET}), the SET pin influences the feedback voltage error amplifier. If there's no need for the analog dimming feature, this pin must be tied to VCC or external voltage supply higher than 1.6 V. Find more details of different application scenarios below(See Figure 23). This pin can also go outside of the ECU for instance if a thermistor is connected on a separated LED module and the analog dimming input is used to thermally protect the LEDs. It's necessary to place an external series resistor to limit the current for reverse battery protection of this pin.

8.7.1. Analog dimming purpose

For LED manufacturers, it is difficult to deliver LEDs which have the same brightness, colorpoint and forward voltage class. Due to this relatively wide spread of the crucial LED parameters automotive customers order LEDs from one or maximum two different colorpoint classes. The LEDs must be preselected by the the LED manufacturer to deliver the requested colorpoint class. These preselected LEDs are matched in terms of the colorpoint but a variation of the brightness remains. An analog dimming feature is needed to correct the brightness deviation. This means LED current can be adjusted by applying an external voltage V_{SET} at the SET pin.

If the DC/DC application is separated from the LED loads the ECU manufacturers aim is to develop one hardware which should be able to handle various load current conditions (for example, from 80 mA to 400 mA) to cover different applications. The analog dimming is critical to achieve this average LED current adjustment.

8.7.2. Application example

The desired LED current is 400 mA. For the calculation of the correct feedback resistor R_{FB} the following equation can be used: This equation is valid if the analog dimming feature is disabled and $V_{SET} > 1.6$ V.

$$I_{\text{LED}} = \frac{V_{\text{REF}}}{R_{\text{FB}}} \rightarrow R_{\text{FB}} = \frac{V_{\text{REF}}}{I_{\text{LED}}} \rightarrow R_{\text{FB}} = \frac{0.3 \text{ V}}{400 \text{ mA}} = 750 \text{ m}\Omega$$
(7)

Related electrical parameter is ensured with V_{SET} = 5 V. By controlling V_{SET} between 0.1 V and 1.6 V, a decrease of the average LED current can be achieved. The mathematical relation can be calculated by the following equation:

$$I_{\text{LED}} = \frac{V_{\text{SET}} - 0.1V}{5 \times R_{\text{FB}}}$$
(8)

Refer to the concept drawing in Figure 22.

If $V_{SET} \leq 50$ mV, the switching activity is stopped and $I_{LED} = 0$ A

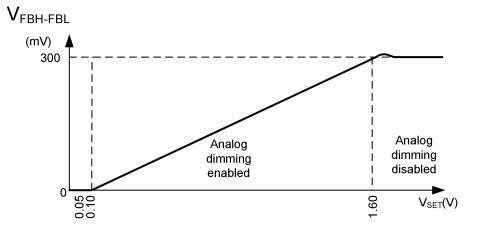
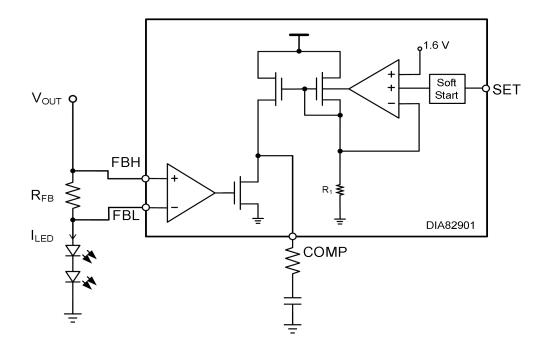
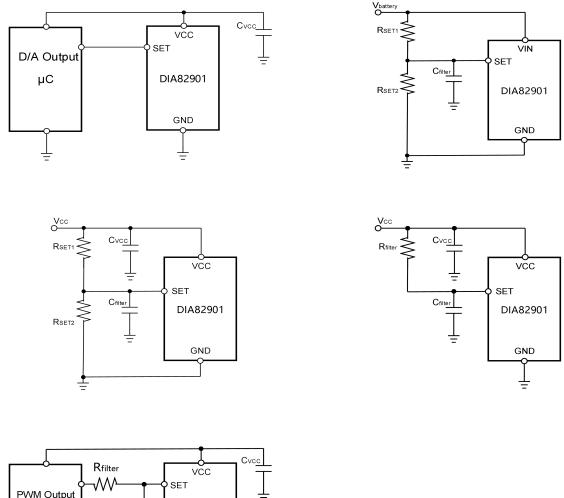


Figure 21. Basic relationship between V_{REF} and V_{SET} voltage




Figure 22. Concept drawing analog dimming

8.7.3. Multi-purpose usage of the analog dimming feature

- A μC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET pin of the DIA82901. If the current consumption is lower than 20 mA, the integrated voltage regulator, V_{CC}, can be used to supply the μC or external components.
- The analog dimming feature is directly connected to V_{IN}. In this configuration the LED current is reduced if V_{IN} is decreased. If V_{IN} drops to a lower potential, the DC/DC boost converter increases the duty cycle of DRVI. This leads to an increase of the input current consumption. If applications require a decrease of the LED current in respect to V_{IN} variations, then choose this setup.
- For systems without µC on board, it's a choice to use an external resistor divider connected between VCC (integrated 5 V regulator output and gate buffer pin) SET and GND. The concept allows to control the LED current via placing cheap low power resistors. In addition, a temperature sensitive resistor (thermistor) to protect the LED loads from thermal destruction can be connected.
- When there's no need for the analog dimming feature, the SET pin must be connected directly to higher than 1.6 V potential (for example, VCC potential)
- Instead of an DAC, the µC can give a PWM signal and an external R-C filter produces a constant voltage for the analog dimming. After reading the coding resistor placed at the LED module, the voltage level depends on the PWM frequency (f_{PWM}) and duty cycle (DC) which can be controlled by the µC software.

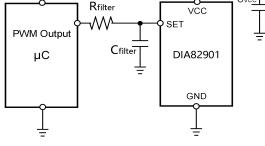


Figure 23. Analog dimming in various applications

9. Application Information

Important notice: Validation and testing are the most reliable ways to confirm system functionality. The application information is not part of the specification and is for reference purposes only.

POS/nDRL is the signal that indicates which function is activated (position light or daytime running light).

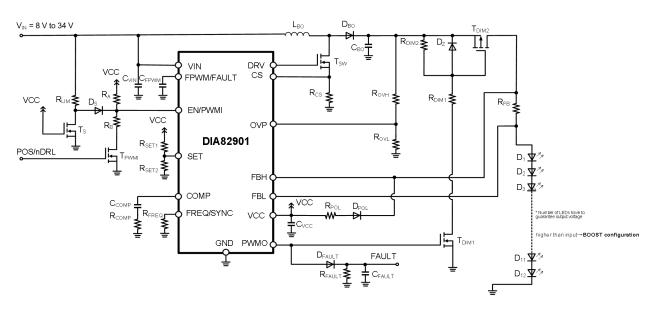


Figure 24. Boost to ground using embedded PWM engine application circuit - B2G (Boost configuration)

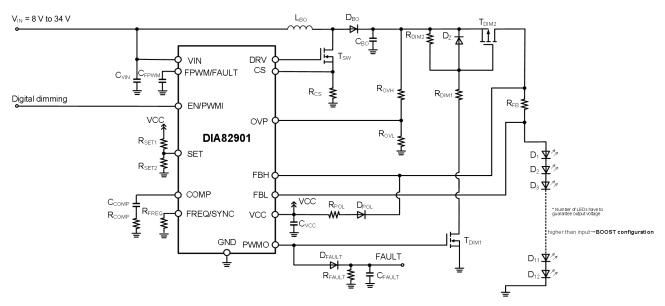


Figure 25. Boost to ground using digital dimming application circuit - B2G (Boost configuration)

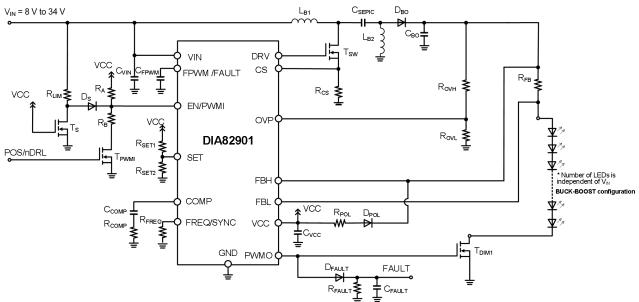


Figure 26. SEPIC using embedded PWM engine application circuit (Buck-Boost configuration)

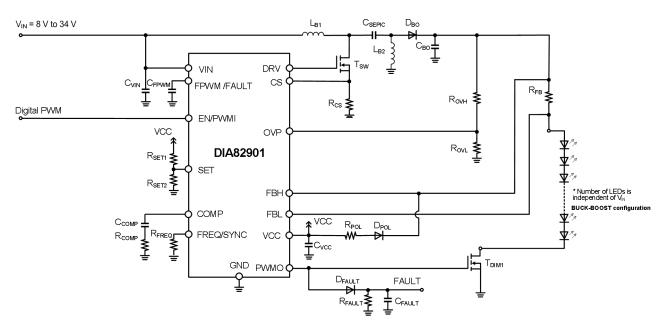


Figure 27. SEPIC using digital dimming application circuit (Buck-Boost configuration)

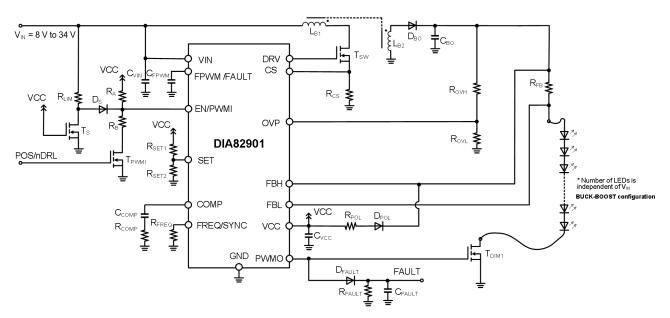


Figure 28. Flyback using embedded PWM engine application circuit (Buck-Boost configuration)

Figure 29. Flyback using digital dimming application circuit (Buck-Boost configuration)

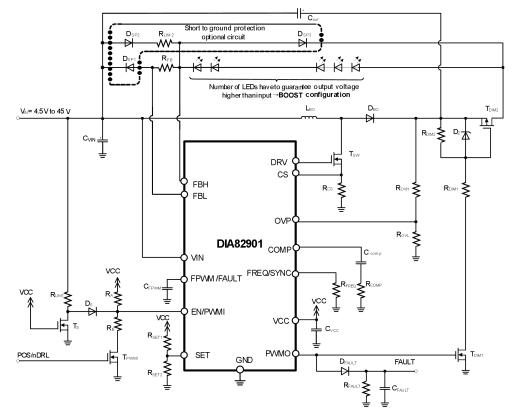


Figure 30. Boost to battery using embedded PWM engine application circuit - B2B (Buck-Boost configuration)

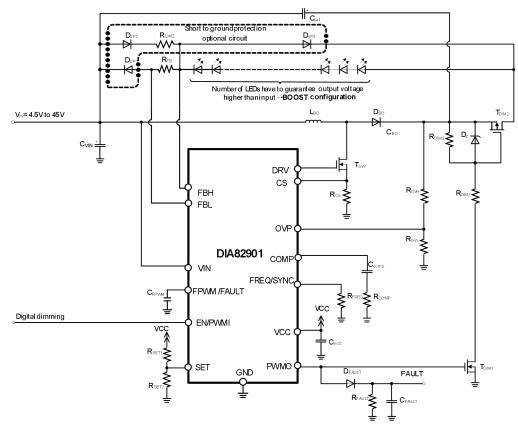


Figure 31. Boost to battery using digital dimming application circuit - B2B (Buck-Boost configuration)

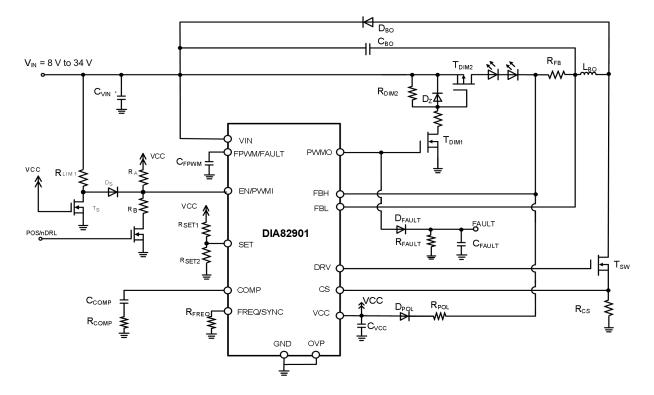


Figure 32. Buck using embedded PWM application circuit

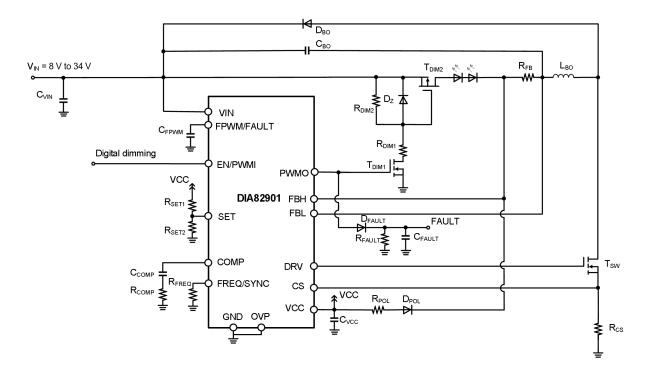


Figure 33. Buck using digital dimming application circuit

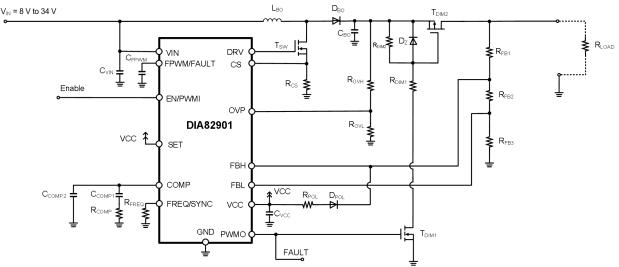
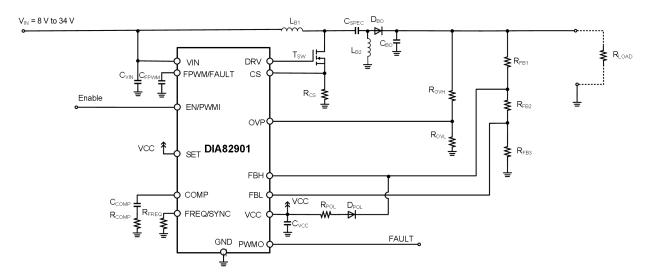
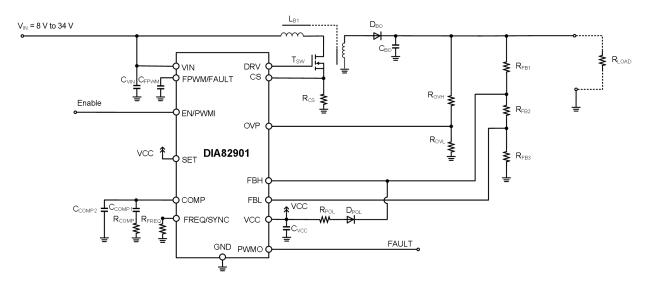
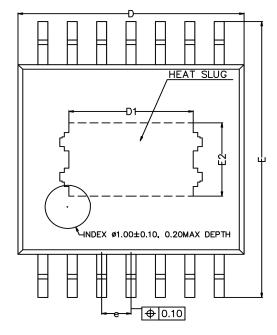
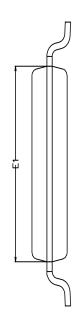
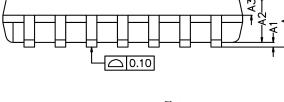
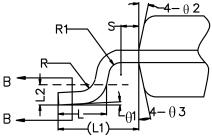




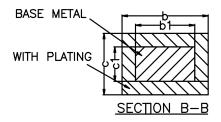
Figure 34. Boost voltage application circuit








10. Physical Dimensions: EP-TSSOP14



Common Dimensions (Units of measure = Millimeters)				
Symbol	Min	Nom	Max	
A	-	-	1.20	
A1	0.05	-	0.15	
A2	0.90	1.00	1.05	
A3	0.32	0.42	0.52	
b	0.20	-	0.29	
b1	0.19	0.22	0.25	
С	0.15	-	0.20	
c1	0.14	0.15	0.16	
D	4.90	5.00	5.10	
D1	2.65	2.75	2.85	
E	6.20	6.40	6.60	
E1	4.30	4.40	4.50	
E2	1.60	1.70	1.80	
е	0.55	0.65	0.75	
L	0.45	0.60	0.75	
L1	1.00 REF			
L2	0.25 BSC			
R	0.09	-	-	
R1	0.09	-	-	
S	0.20	-	-	
θ1	0°	-	8°	
θ2	10°	12°	14°	
θ3	10°	12°	14°	

Disclaimer

This specification and information contained herein are provided on an "AS IS" basis and WITH ALL FAULTS. All product specifications, statements, information, and data (collectively, the "Information") in this datasheet or made available on the website of www.dioo.com are subject to change without notice. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to his/her application. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, express or implied.